Merekadiberi tayangan atau paparan terkait materi Bilangan berpangkat bulat positif. (Literasi) Materi Pokok : Bilangan Berpangkat dan Bentuk Akar Indikator : Peserta didik menunjukkan perilaku disiplin, Tanggung jawab, Jujur, Nyatakan perkalian berualang berikut dalam perpangkatan
Jakarta - Soal bilangan berpangkat dikenal saat duduk di bangku Sekolah Menengah Pertama SMP. Pada bab ini, siswa akan menuliskan nominal panjang dalam sebuah angka berpangkat bulat. Seperti apa contoh soal bilangan berpangkat?Contoh soal berpangkat bulat dalam matematika 1 miliar ditulis dengan Maka, untuk membuatnya tidak terlalu panjang bisa ditulis dengan bilangan berpangkat yakni 1 x 109 atau dilihat dari pangkatnya, bilangan berpangkat terdiri dari bilangan berpangkat bulat positif dan bilangan berpangkat bulat memahami contoh soal bilangan berpangkat, kenali dulu apa itu bilangan berpangkat. Dikutip dari buku "Belajar Pangkat dan Akar" oleh Andi Nurdiansyah dan buku "Cerdas Belajar Matematika" Marthen Kanginan, berikut dari sebuah bilangan adalah suatu indeks yang menunjukkan banyaknya perkalian bilangan yang sama secara a adalah bilangan riil dan n bilangan bulat positif maka an dibaca "a pangkat n" adalah hasil kali n buah faktor yang masing-masing faktornya adalah kata lain a harus dikalikan dengan a itu sendiri. sebanyak n = a x a x a x ... x a a dikalikan sebanyak n faktornyaKeterangana = bilangan pokok basisn = bilangan pangkat eksponenan = bilangan berpangkatDalam kehidupan sehari-hari terdapat contoh bilangan berpangkat bulat positif misal pada perkalian bilangan-bilangan dengan faktor-faktor yang terdapat perkalian bilangan-bilangan sebagai x 2 x 23 x 3 x 3 x 3 x 56 x 6 x 6 x 6 x 6 x 6Perkalian bilangan-bilangan dengan faktor-faktor yang sama seperti di atas, disebut sebagai perkalian berulang. Setiap perkalian berulang dapat dituliskan secara ringkas dengan menggunakan notasi bilangan berpangkat. Perkalian bilangan bilangan di atas dapat kita tuliskan dengan2 × 2 × 2 = 2³ dibaca 2 pangkat 33 × 3 × 3 × 3 × 3 = 3³ dibaca 3 pangkat 56 × 6 × 6 × 6 × 6 × 6 = 66 dibaca 6 pangkat 6Bilangan 2³, 3³, 66 disebut bilangan berpangkat sebenarnya karena bilangan-bilangan tersebut dapat dinyatakan dalam bentuk perkalian soal bilangan berpangkat bulat positifTentukan nilai dari pemangkatan berikut inia. 34b. ⅖3c. -17Jawabana. 34 = 3 x 3 x 3 x 3 = 81b. ⅖3 = ⅖ x ⅖ x ⅖ = 8/125c. -17 = -1 x -1 x -1 x -1 x -1 x -1 x -1 = -1Bilangan Berpangkat Bulat NegatifJika bilangan berpangkat bulat positif memiliki pangkat yang merupakan positif, maka bilangan berpangkat negatif memiliki pangkat yang a bilangan real, a ≠ 0, dan n bilangan bulat positif, makaContoh Soal Bilangan Berpangkat Bulat Positif, Negatif Lengkap dengan Jawabannya Foto ScreenshootContoh Soal Bilangan Berpangkat Bulat NegatifNyatakan bilangan berpangkat bulat negatif berikut ke bilangan berpangkat bulat positif. Kemudian tentukan hasil -2-5b. 1/4-3JawabanContoh Soal Bilangan Berpangkat Bulat Positif, Negatif Lengkap dengan Jawabannya Foto ScreenshootDetikers, selamat belajar contoh soal bilangan berpangkat bulat dan negatif di atas ya! Simak Video "Google Sediakan 11 Ribu Beasiswa Pelatihan untuk Bangun Talenta Digital" [GambasVideo 20detik] pay/pay

StandarKompetensi: 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma. Kompetensi Dasar : 1.1. Menggunakan aturan pangkat, akar, dan logaritma. Indikator : 1. Menyederhanakan bentuk suatu bilangan berpangkat. 2. Mengubah bentuk pangkat negatif dari suatu bilangan ke bentuk pangkat positif, dan sebaliknya.

Halo sahabat studio literasi! Kali ini kita akan mempelajari materi baru nih. Dalam matematika ada yang namanya bilangan. Bilangan ini juga banyak macamnya, salah satunya yang akan kita pelajari sekarang ini. Langsung aja yuk belajar materi bilangan berpangkat mulai dari pengertian sampai contoh soal bilangan berpangkat. Pengertian Bilangan BerpangkatCara menulis Bilangan BerpangkatBilangan Pangkat PositifBilangan Pangkat NegatifBilangan Berpangkat NolBentuk Akar Pengertian Bilangan Berpangkat Bilangan berpangkat atau Perpangkatan adalah perkalian berulang dari suatu bilangan yang sama. Bilangannya dapat berupa bilangan pangkat bulat positif, nol atau bulat negatif. Bentuk umum dari perpangkatan adalah an = a × a × a × … × a, dengan n bilangan bulat positif dan a sebanyak jumlah n Artikel Terkait Contoh, perpangkatan 3 seperti di bawah ini 3 × 3 × 3 × 3 × 3 = 35 35 adalah perpangkatan 3. 3 disebut sebagai bilangan pokok basis sedangkan 5 sebagai pangkat eksponen. Cara menulis Bilangan Berpangkat 1. –2 × –2 × –2 Karena –2 dikalikan berulang sebanyak tiga kali maka –2 × –2 × –2 merupakan perpangkatan dengan basis –2 dan pangkat 3. Jadi –2 × –2 × –2 = -23 2. a × a × a × a × a × a Karena a dikalikan berulang sebanyak enam kali maka a × a × a × a × a × a merupakan perpangkatan dengan basis a dan pangkat 6. Jadi a × a × a × a × a × a = a6 Operasi bilangan berpangkat positif adalah bilangan yang mempunyai pangkat / eksponen bernilai positif. Bilangan dengan pangkat positif juga memiliki sifat sifat tertentu, Dimana a, b, bilangan real m, n adalah bilangan bulat positif. Mari kita simak sifat dan contoh soal bilangan dengan Pangkat Positif sebagai berikut am × an = am+n Contoh soal 32 × 33 = 32 + 3 = 35 am an = am-n Contoh soal amn = amxn Contoh soal 32 3 = 32∙3 = 36 am x bm = a x bm Contoh soal 23 ∙33 = 2∙33 a bm = am bm Contoh soal Bilangan Pangkat Negatif Sesuai dengan nama nya, pangkat atau eksponen dari operasi bilangan berpangkat ini bernilai negatif. Contoh soal Bilangan Berpangkat Nol Dalam matematika tak hanya bilangan berpangkat positif dan negatif saja, tetapi ada juga operasi bilangan berpangkat nol. a0 = 1 , dengan konsep jika a adalah bilangan real dan a tidak sama dengan 0 sifat sifat perpangkatan bilangan nol ao = 1 , dengan konsep jika a adalah bilangan real dan a tidak sama dengan 00n = 00o = tak terdefinisi Baca Juga Persamaan dan Pertidaksamaan Nilai Mutlak Bentuk Akar Bentuk akar adalah penyebutan lain suatu bilangan berpangkat. Bentuk akar merupakan akar dari bilangan yang hasilnya bukan bilangan rasional atau disebut bilangan irasional. Bentuk akar termasuk dalam bilangan irasional. Bilangan irasional adalah bilangan yang hasilnya tidak bisa habis jika dibagi. tanda √ disebut sebagai tanda akar. √a dibaca dengan “akar kuadrat dari a” n√a dibaca dengan “akar pangkat n dari a” Seperti hal nya perpangkatan, bentuk akar juga memiliki sifat, diantaranya adalah √a2 = a√a x b = √a x √b ; a ≥ 0 dan b ≥ 0√a/b = √a/√b ; a ≥ 0 dan b ≥ 0 Bagaimana? Sudah jelas materi matematika kali ini? Kira-kira materi apa yang harus Studioliterasi bahas selanjutnya? Tulis saran kamu di kolom komentar, ya. Semangat belajar!

CaraMenyederhanakan Bentuk Akar. Beberapa bentuk akar dapat disajikan dalam bentuk yang lebih sederhana. Untuk setiap a dan b bilangan bulat positif, maka berlaku rumus atau persamaan berikut: Dengan a atau b harus dapat dinyatakan dalam bentuk kuadrat murni. Contoh: √108 = √36 x √3 = 6 √3. √(1/8) = √(1/16 x 2) = √(1/16) x √2 Matematika SMP Kelas 7 Semester 1"Bilangan Berpangkat Bulat Positif"Pengertian Bilangan Berpangkat Bulat PositifBilangan berpangkat dikenal juga dengan istilah bilangan eksponen. Bilangan Berpangkat dapat dinyatakan dalam bentuk seperti gambar di atas dengan b dan angka 3 adalah bilangan bulat. B disebut bilangan basis atau pokok, sedangkan angka 3 disebut eksponen atau pangkat. Contoh 10^2 dibaca "Sepuluh pangkat 2". -Menyatakan Bilangan Desimal Menjadi Bilangan Berpangkat Bulat Positif-Cara menyatakan Bilangan Berpangkat Bulat Positif menjadi Bilangan Desimal yaitu hanya mengubahnya dalam bentuk perkalian, kemudian menentukan hasil kalinya. Sedangkan cara untuk menyatakan Bilangan Desimal menjadi Bilangan Berpangkat Bulat Positif yaitu dengan menentukan faktor-faktor terlebih dahulu. Faktor Bilangan Bilangan bulat a dikatakan faktor dari bilangan bulat b jika ada bilangan bulat n. Sehingga a x n = 2 dikatakan faktor dari 8 karena ada bilangan 4, sehingga 2 x 4 = 8Untuk menentukan faktor-faktor dari bilangan desimal tersebut, salah satu caranya yaitu dengan membagi bilangan tersebut secara Cara menjadikan bilangan desimal 564 menjadi bilangan 2 324 2162 281 327 39 33 31648 = 2 x 2 x 2 x 3 x 3 x 3 x 3 = 2^3 x 3^4Membandingkan Bilangan Berpangkat BesarContoh 1 Tentukan bilangan yang lebih besar antara 5^6 dengan 6^5Jawab 5^6 = 5 x 5 x 5 x 5 x 5 x 5 = = 6 x 6 x 6 x 6 x 6 = bilangan yang lebih besar antara 5^6 dengan 6^5 adalah 5^ 2 Tentukan bilangan yang lebih besar antara bilangan 100^101 dengan 101^100Jawab Untuk membandingkan bilang yang berpangkat cukup besar tersebut, bisa melakukan percobaan untuk bilangan-bilangan yang lebih kecil, tetapi dengan pola yang sama. 3^4 > 4^3 4^5 > 5^45^6 > 6^5Dengan melakukan percobaan di atas, dapat disimpulkan bahwa 100^101 > 101^ 1Episode 1 Bilangan Bulat 2 Bilangan Pecahan Bilangan1/2, 1/3, 2/3, - 2/5, - 3/7, dan - 5/9 merupakan bilangan rasional karena memenuhi bentuk seperti pada Definisi 1. 2. Pengertian Bilangan Rasional Berpangkat Bilangan Bulat Positif. Dalam kehidupan sehari-hari, kadang-kadang kamu harus mengalikan bilangan-bilangan berikut: 3 × 3. 5 × 5 × 5. (-2) × (-2) × (-2) × (-2
Nyatakan bilangan bilangan berikut ini dalam bentuk pangkat bulat positif .1. Nyatakan bilangan bilangan berikut ini dalam bentuk pangkat bulat positif .2. Nyatakan bilangan berikut ini dalam bentuk pangkat bulat positif...​3. nyatakanlah bilangan berikut dalam bentuk pangkat bulat positif4. Nyatakan bentuk berikut dalam bilangan berpangkat bulat positif 3a-²b-³5. nyatakan bentuk bentuk berikut menjadi bilangan berpangkat bulat positif? 12-³​6. nyatakan bentuk bentuk berikut dalam bilangan berpangkat bilangan bulat positif 6 pangkat min 3​7. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif ⅛²​8. nyatakan bentuk bentuk berikut menjadi bilangan berpangkat bulat positif 9-²​9. nyatakan bilangan berikut dalam bentuk pangkat bulat positif​10. nyatakan bentuk bentuk berikut dalam bilangan berpangkat bulat positif!11. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif 3⁶​12. nyatakanlah bilangan-bilangan berikut dalam bentuk pangkat bilangan bulat positif!13. Nyatakan bentuk berikut dalam bilangan berpangkat bulat positif 3a-²b-³14. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif -6-⁵​15. /nyatakan bentuk bentuk berikut dalam BILANGAN BERPANGKAT BULAT POSITIF​16. Nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif 9 pangkat negatif 217. nyatakan bentuk bentuk berikut dalam bilangan berpangkat bulat positif!18. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif 12^³19. nyatakan bentuk berikut dlm bilangan berpangkat bulat positif? 9-³​20. tolong dijawab yaPertanyaan 1. Nyatakan bentuk bentuk berikut dalam bilangan berpangkat bilangan bulat positif2. Nyatakan bentuk bentuk berikut dalam bilangan berpangkat bilangan bulat negatif​ 1. Nyatakan bilangan bilangan berikut ini dalam bentuk pangkat bulat positif .Penjelasan dengan langkah-langkahmaaf ini mana soalnya ya?Jawabanbilangan apa ya Penjelasan dengan langkah-langkahmohon si jelaskan 2. Nyatakan bilangan berikut ini dalam bentuk pangkat bulat positif...​Jawaban1. 1/3^42. 1/a^33. 1/k^2-1/m^2 /1/m+1/k= m^2-k^2/k^2m^2/k+m/km = m^2-k^2/kmk+m = m-k/km 3. nyatakanlah bilangan berikut dalam bentuk pangkat bulat positif 1/5x² - 1/7y pangkat5Maaf kalo salah 4. Nyatakan bentuk berikut dalam bilangan berpangkat bulat positif 3a-²b-³ Ada di foto. Semoga membantu 3/a2-b3=3/ Semoga bermanfaat 5. nyatakan bentuk bentuk berikut menjadi bilangan berpangkat bulat positif? 12-³​Jawab12-³​ = 1/12³Semoga membantu 6. nyatakan bentuk bentuk berikut dalam bilangan berpangkat bilangan bulat positif 6 pangkat min 3​Jawaban1/6^3Penjelasan[tex] = {6}^{ - 3} \\ = \frac{1}{ {6}^{3} } \\ = \frac{1}{216} [/tex]Kalau pangkat dijadikan positif maka dibalik menjadi penyebut seperti di membantu! 7. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif ⅛²​Jawab1,5625 x 10^-2Penjelasan dengan langkah-langkah1/8^2 = 1/64 = 0,015625 = 1,5625 x 10^-2 8. nyatakan bentuk bentuk berikut menjadi bilangan berpangkat bulat positif 9-²​JawabSemoga membantu 9. nyatakan bilangan berikut dalam bentuk pangkat bulat positif​Diketahui [tex]c. \ \ \frac{2}{ {b}^{ - 5} } \\ d. \ \ \frac{1}{5 {b}^{ - 7} } [/tex]Ditanyakan Bentuk pangkat positifJawab [tex]c. \ \ \frac{2}{ {b}^{ - 5} } \\ = 2 \times \frac{1}{b} {}^{ - 1} {}^{5} \\ = 2 \times b {}^{5} \\ = 2 {b}^{5} [/tex][tex]d. \ \ \frac{1}{5b {}^{ - 7} } \\ = \frac{1}{5} \times \frac{1}{b} {}^{ - 1} {}^{7} \\ = \frac{1}{5} \times {b}^{7} \\ = \frac{ {b}^{7} }{5} [/tex]_________________________________________DETAIL JAWABAN Mapel Matematika Kelas 9Materi Bab 1 - Bilangan BerpangkatKata kunci PangkatKode Soal 2 Kode kategorisasi 10. nyatakan bentuk bentuk berikut dalam bilangan berpangkat bulat positif! a. 1/9²b. 1/12³c. 3/a²b³d. 5/pq^5e. n/2m²f. 2/5m³n^4g. -3/7x^5y³h. -4/9x³y^5maaf kalo ada yg salah 11. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif 3⁶​Jawaban=3^6=3×3×3×3×3×3=729 12. nyatakanlah bilangan-bilangan berikut dalam bentuk pangkat bilangan bulat positif! a. = 1/4²b. = 1/5³c. = 1/7⁴ d. = 2/243e. = 4/5³f. = 5/ 7⁴itu jawaban nya 13. Nyatakan bentuk berikut dalam bilangan berpangkat bulat positif 3a-²b-³ menjadi 3/a²b³______ 14. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif -6-⁵​Penjelasan dengan langkah-langkah-6^-5 = 1/-6^5=1/-7776 15. /nyatakan bentuk bentuk berikut dalam BILANGAN BERPANGKAT BULAT POSITIF​Jawabang.[tex] - \frac{3}{7} {x}^{ - 5} {y}^{ - 3} = - \frac{3}{7} \frac{1}{ {x}^{5} } \frac{1}{ {y}^{3} } = - \frac{3}{7 {x}^{5} {y}^{3} } [/tex]h.[tex] - \frac{4}{9} {x}^{ - 3} {y}^{ - 5} = - \frac{4}{9} \frac{1}{ {x}^{3} {y}^{5} } [/tex] 16. Nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif 9 pangkat negatif 2 1/9^2 atau satu per 9 pangkat 2 17. nyatakan bentuk bentuk berikut dalam bilangan berpangkat bulat positif! a. 1/9²b. 1/12³c. 3/a²b³d. 5/p¹q5e. n /2m²semoga membantu 18. nyatakan bentuk-bentuk berikut dalam bilangan berpangkat bulat positif 12^³ 12³=12x12x12=1728 maaf kalo salah 19. nyatakan bentuk berikut dlm bilangan berpangkat bulat positif? 9-³​Jawaban9^-3 = 1/9^3 = 1/729 = 0,00137Penjelasan dengan langkah-langkahSudah di jawaban 20. tolong dijawab yaPertanyaan 1. Nyatakan bentuk bentuk berikut dalam bilangan berpangkat bilangan bulat positif2. Nyatakan bentuk bentuk berikut dalam bilangan berpangkat bilangan bulat negatif​ Pembahasan1. Definisi Bilangan BerpangkatJika a ∈ R dan n bilangan bulat positif yang lebih dari 1, maka bilangan bilangan berpangkat a pangkat n ditulis [tex]a^n[/tex] didefinisikan sebagai perkalian berulang bilangan a sebanyak n faktor. Secara umum bentuk dari bilangan berpangkat adalah sebagai berikut.[tex]a^n = a \times a \times a \times .... \times a[/tex] ______________ sebanyak n faktordengana = bilangan pokok atau basisn = bilangan pangkat atau eksponen2. Sifat Bilangan BerpangkatUntuk a ∈ R dan a ≠ 0, serta m, n bilangan bulat, maka berlaku[tex]a^m \times a^n = a^{m + n}\\[/tex][tex]a^m a^n = a^{m -n}\\[/tex][tex]a^m^n = a^{m \times n}\\[/tex][tex]a \times b^m = a^m \times b^m\\[/tex][tex]\frac{a}{b} ^m = \frac{a^m}{a^n}\\[/tex][tex]a^0 = 1\\[/tex][tex]a^{-m} = \frac{1}{a^m}[/tex]Penyelesaiannomor 1a. [tex]8^{-2} = \frac{1}{8^2} = \frac{1}{8} ^2[/tex]b. [tex]-5^{-3} = -\frac{1}{5^3} = -\frac{1}{5} ^3[/tex]c. [tex]3a^{-2}\ b = \frac{3b}{a^2}[/tex]d. [tex]x^{-2} + y^{-3} = \frac{1}{x^2} + \frac{1}{y^3}[/tex]e. [tex]a + b^{-2}^{-3} = a + \frac{1}{b^2} ^{-3} = \frac{1}{a + \frac{1}{b^2}} ^3[/tex]f. [tex]\frac{ab}{c^2\ d^3} ^{-4} = \frac{c^2 \ d^3}{ab} ^4[/tex]nomor 2a. [tex]\frac{1}{5} = 5^{-1}[/tex]b. [tex]7^3 = \frac{1}{7^{-3}}[/tex]c. [tex]\frac{1}{ab} = a^{-1}\ b^{-1} = ab^{-1}[/tex]d. [tex]\frac{abc^3}{xy^6} ^2 = \frac{xy^6}{abc^3}^{-2}[/tex]e. [tex]\frac{2z^2 \ w^{-1}}{3xy^{-4}} = \frac{4z^2 \w^{-1}}{3xy^{-4}}[/tex] [tex]= \frac{4 x^{-1}\ w^{-1}}{3y^{-4}\ z^{-2}}[/tex] [tex]= \frac{4xw^{-1}}{3y^2z^{-2}}[/tex]f. [tex]\frac{2a^{-2}b}{c} ^{-2}^3 = \frac{2a^{-2\times -2} \ b^{-2}}{c} ^3[/tex] [tex]= \frac{2a^4\ b^{-2}}{c} ^3[/tex] [tex]= \frac{c}{2a^4\b^{-2}}^{-3 }[/tex]Pelajari Lebih Lanjut- sifat-sifat bilangan berpangkat -> berbagai soal tentang perpangkatan Detail JawabanKelas 9Mapel MatematikaBab Bilangan BerpangkatMateri Bilangan PangkatKode kategorisasi kunci menyatakan bentuk ke pangkat positif dan negatif
Selesaikansoal-soal pada lembar kerja berikut, kemudian diskusikan hasil pekerjaan anda dengan hasil keja teman satu kelompok dan atau kelompok lain Bilangan berpangkat bulat positif · ( x b)n = n x bn Contoh: (2 x 3 )2 = (2 x 3) x (2 x 3) = 2 x 2 x 3 x 3=22 x 33 Nyatakan dalam bentuk pangkat positif Penyelesaian: 3. Tentukan nilai x

Mungkin dari sebagian kalian telah mempelajari mengenai materi bilangan berpangkat. Atau mungkin belum pernah mendengar sama sekali apa itu bilangan berpangkat. Berikut informasi bilangan berpangkat ini ternyata mempunyai banyak manfaat ataupun kegunaan yang sangat penting khususnya bagi para selengkapnya mengenai bilangan berpangkat, simak pembahasan berikut BerpangkatJenis Jenis Bilangan Berpangkat1. Bilangan Berpangkat Positif2. Bilangan Berpangkat Negatif3. Bilangan berpangkat Nol 0Sifat Sifat Bilangan Berpangkat1. Pangkat Bulat positif2. Pangkat Bulat Negatif3. Pangkat Nol4. Sifat-sifat Pangkat Bulat Positif5. Pangkat PecahanOperasi Hitung Bilangan Berpangkat1. Sifat Perkalian Bilangan Berpangkat2. Sifat Pembagian Bilangan Berpangkat3. Sifat Perpangkatan Bilangan Berpangkat4. Sifat Perpangkatan Suatu Perkalian Dua Bilangan5. Sifat Perpangkatan Suatu Pembagian Dua Bilangan6. Sifat Perpangkatan Bilangan nolBentuk AkarBilangan berpangkat merupakan suatu bilangan yang berguna untuk menyederhanakan penulisan serta penyebutan suatu bilangan yang mempunyai faktor-faktor perkalian yang contoh 3x3x3x3x3=… atau 7x7x7x7x=… , dan lain berbagai bilangan dengan faktor-faktor yang sama seperti di atas pada umumnya disebuat dengan perkalian apabila yang dikalikan angkanya sangat banyak, maka kita juga akan mengelami kesulitan di dalam dalam tersebut tak lain sebab sangking banyaknya angka untuk satu kali bilangan pada perkalian perkalian berulang bisa kita tuliskan secara ringkas dengan memakai notasi angka bilangan contoh3 x 3 x 3 x 3 x 3 bilangan tersebut bisa kita ringkas kembali dengan memakai bilangan berpangkat menjadi 35 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 dan angka tersebut bisa kita ringkas kembali hingga menjadi bilangan berpangkat 810Cara membacanya35 Sepuluh pangkat 5 810 Delapan pangakt 10Pangkat di atas berguna untuk menentukan jumlah faktor yang di bilangan berpangkat yaituan=a×a×a×a…sebanyak n kaliJenis Jenis Bilangan BerpangkatTerdapat beberapa jenis bilangan berpangkat yang paling sering lain yakni bilangan berpangkat positif +, bilangan berpangkat negatif - serta bilangan berpangkat nol 0.Berikut akan kami berikan penjelasan pada masig-masing jenisnya. Simak baik-baik ulasan di bawah ini Bilangan Berpangkat PositifBilangan berpangkat positif merupakan suatu bilangan yang mempunyai pangkat atau eksponen positif. Apa itu yang dimaksud sebagai eksponen? eksponen merupakan penyebutan lain dari pangkat. Bilangan berpangkat positif mempunyai sifat-sifat tertentu, yang mana bilangan tersebut terdiri atas a, b, sebagai bilangan real dan m, n, yang merupakan bilangan bulat Eksponen merupakan suatu bentuk pada bilangan perkalian dengan bilangan yang sama kemudian di ulang-ulang atau pengertian singkatnya yaitu perkalian yang beberapa sifat dari bilangan berpangkat positif, diantaranya ialah sebagai berikut iniam x an = am+nam an = am-n , untuk m>n dan b ≠ 0amn = amnabm = am bma/bm = am/bm , untuk b ≠ 0Untuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah Bilangan Berpangkat NegatifKemudian ialah pengertian dari bilangan berpangkat negatif yang merupakan bilangan yang mempunyai pangkat atau eksponen negatif -.Adapun beberapa sifat bilangan berpangkat negatif, antara lain ialah sebagai berikutJika a∈R, a ≠ 0, dan n merupakan bilangan bulat negatif, makaa-n = 1/an atau an = 1/ a-nUntuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah iniSoal sekaligus nyatakan dengan pangkat positif bilangan berpangkat di bawah ini1/ 6a + b-7 = ….Jawab1/ 6a + b-7 = = 1/6 a+b7Soal dengan pangkat negatif bilangan berpangkat di bawah inix1y2 / 2z6 = ….Jawabx1y2 / 2z6 = 2-1x-1z-6 / y-2, dengan x ≠ 0 dan z ≠ Bilangan berpangkat Nol 0Tak hanya ada bilangan berpangkat positif serta bilangan berpangkat negatif yang ada pada bilangan berpangkat dalam ilmu matematika juga terdapa bilangan berpangkat nol a. Maka dati itu, yuk mari kita pelajari lebih dalam mengenai bilangan berpangkat nol kita sudah mengetahui bahwa sifat-sifat bilangan berpangkat, ialah sebagai berikutan/an = 1 berdasarkan dari sifat pembagian bilangan berpangkat positif maka bisa kita dapatkanan/an = an-n = a0, sehingga a0 = 1Sehingga sifat dari bilangan berpangkat nol 0 yaitu “Jika nilai a merupakan bilangan riil serta a tidak sama dengan 0, maka a0 = 1″Untuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah iniSederhanakan beberapa bilangan berpangkat di bawah iniSoal – y2x2 – y20Soal + 2 y / 3x + 2y0JawabSoal – y2x2 – y20 = 5x2 – y2 x 1 = 5x2 – y2, dengan x2 – y2 ≠ 0Soal + 2 y / 3x + 2y0 = 3x + 2y / 1 = 3x + 2y, dengan 3x + 2y ≠ 0Demikianlah pembahasan yang dapat kita sampaikan terakti bilangan berpangkat, sekarang kita lanjutkan ke pembahasan yang ke dua yakni Bentuk Akar. Perhatikan baik-baik ulasan di bawah ini ya..Sifat Sifat Bilangan BerpangkatBerikut ini adalah beberapa sifat yang terdapat di dalam bilangan berpangkat, antara lian yakni1. Pangkat Bulat positifPengertianSebagai contohnya a bilangan real serta n bilangan bulat positif. Notasi anakan menyatakan hasil kali dari bilangan a sebanyak n faktor. Sehingga dapat kita tuliskan menjadian = a × a × a × … × aDi mana a x a x a x …. x a merupakan n merupakan basis bilangan merupakan dapat kita ketahui bahwa Pada uraian di atas, maka kita sepakati, a1 cukup ditulis dengan a. Tidak seluruh a0 dengan a bilangan real menyatakan 1. Pada saat a = 0 serta n = 0, maka an= 00, maka hasilnya tidak menentu. Apabila n merupakan suatu variabel sebagai eksponen dari a, maka perlu kita perhatikan semesta variabel tersebut. Karena an = a × a × … × a sebanyak n faktor, ini hanya berlaku pada saat semesta n ∈ lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah ini24 = 2 x 2 x 2 x 2 =1632 = 3 x 3 = 92. Pangkat Bulat NegatifPengertianUntuk a bilangan real serta a ≠ 0, m bilangan bulat positif, maka di definisikan menjadia-m = 1/amDari uraian di atas maka dapat dijelaskan lagi menjadi sebagai berikutUntuk lebih memahami uraian di atas, perhatikan baik-baik contoh soal di bawah ini3. Pangkat NolPengertianUntuk a bilangan real serta a ≠ 0, maka a0 = a tidak boleh sama dengan nol?Seperti yang sudah dijelaskan di atas, pada saat a = 0 maka a0 = 00, maka hasil­nya tidak contoh20 = 130 = 14. Sifat-sifat Pangkat Bulat PositifBerikut adalah beberapa sifat dari bilangan pangkat bulat positifSifat-1Apabila a bilangan real, m serta n bilangan bulat positif makaam × an = am+nPembuktianSi­fat di atas hanya berlaku apabila a merupakan bilangan real, m serta n merupakan bi­langan bulat positif. Apabila m dan n bukan bilangan bulat positif, maka sifat-1 tidak berlaku. Contohnya a = 0 dan m = n = 0, tidak ber­ contoh22 x 23 = 2 x 2 x 2 x 2 x 2= 32= 2522 x 23 = 22+3Sifat-2Apabila a bilangan real serta a ≠ 0, m dan n bilangan bulat positif, sehinggaDalam sifat-2 tidak diperkenakan apabila a = 0, karena ben­tuk perpangkatan pada sifat-2 merupakan bentuk ra­ pecahan yang penyebutnya tidak lazim nol. Pada a = 0 dan m, n merupakan bilangan bulat positif, sehingga am atau an dimung­kinkan hasilnya hasil am serta an keduanya nol, maka hasil baginya tidak am = 0 dan an ≠ 0, maka hasil baginya 0. Namun, apabila am ≠ 0 dan an = 0, maka hasil baginya tak ter­ contoh25 / 23 = 2 x 2 x 2 x 2 x 2 / 2 x 2 x 2= 4= 22= 25-3Perpangkatan Bilangan BulatSecara umum, perkalian sembarang bilangan bulat a sebanyak n kali atau n faktor, yaitua × a × a × … × a atau jika ditulis menjadi an Keterangana = disebut sebagai bilangan pokok atau bilangan dasar n = disebut sebagai pangkat atau eksponen an = disebut sebagai bilangan berpangkat dibaca a pangkat nSifat-3Jika a bilangan real serta a ≠ 0, m dan n merupakan bilangan bulat positif, maka amn = amnPembuktianSebagi contoh 232 = 23 x 23= 2 x 2 x 2 x 2 x 2 x 2= 2 x 2 x 2 x 2 x 2 x 2= 26Di mana 2 x 2 x 2 merupakan 3 faktor, 2 x 2 x 2 x 2 x 2 x 2 merupakan 6 faktor, dan lain Pangkat PecahanPengertianContohnya a merupakan bilangan real dan a ≠ 0, serta m merupakan bilangan bulat positif, maka a1/m = p merupakan bilangan real positif, sehingga pm = perpangkatan bilangan real dengan pangkat pecahanPengertianContonya a merupakan bilangan real dan a ≠ 0, m, n merupakan bilangan bulat positif maka didefinisikan menjadiam/n = a1/nmMisalkan a merupakan bilangan real dengan a > 0,p/n dan m/n merupakan bilangan pecahan n ≠ 0, makaam/n = ap/n = am+p/nPembuktianApabila a merupakan bilangan real dengan a > 0, sehinggam/n dan p/q bilangan pecahan q, n ≠ 0, makaam/n = ap/q = am/n+p/qRangkuman sifat bilangan berpangkatUntuk a, b merupakan bilangan bulat serta n, p, dan q merupakan bilangan bulat positif, maka berlakuOperasi Bilangan BerpangkatBilangan negatif dipangkatkan dengan pangkat ganjil maka akan menghasilakn bilangan negatif dipangkatkan dengan pangkat genap maka akan menghasilkan hasilnya bilangan bilangan berpangkat yang bilangan pokoknya sama, maka pangkatnya akan bilangan berpangkat yang bilangan pokoknya sama, maka pangkatnya akan bilangan berpangkat apabila dipangkatkan lagi, maka pangkatnya akan menjadi Hitung Bilangan BerpangkatBerikut akan kami berikan operasi hitung dalam bilangan berpangkat. Meliputi sifat perkalian, pembagian, perpangkatan dan yang lainnya sekaligus contoh soal dan ulasan di bawah ini dengan Sifat Perkalian Bilangan BerpangkatPada operasi hitung perkalian dalam bilangan berpangkat, berlaku sifat seperti di bawah iniam x an = am+nUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini53 x 52 = 5 x 5 x 5 x 5 x 553 x 52 = 5 x 5 x 5 x 5 x 553 x 52 = 55Sehingga dapat kita simpulkan menjadi 53 x 52 = 55Contoh Soal Sifat Perkalian Bilangan Berpangkat beserta PembahasannyaSederhanakan hasil perkalian dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!72 x 75-24 x -25-33 x -3723 x 343y2 x y32x4 x 3x6-22 x 23Jawab1. 72 x 75 = 72+5 = 77 = -24 x -25 = -24+5 = -29 = – 5123. -33 x -37 = -33+7 = -310 = 23 x 34 , soal ini tidak bisa kita sederhakan kembali sebab bilangan pokonya berbeda 2 dan 3. Sehingga, kita hanya dapat menghitung nilainya saja, yaitu 23 x 34 = 8 x 81 = 6485. 3y2 x y3 = 3y2+3 = 3y56. 2x4 x 3x6 = 2 x 3x 4+6 = 6x107. -22 x 23 = -12 x 22 x 23 = 1 x 22+3 = 25 = 32Untuk kasus bilangan pokok negatif yang berpangkat, seperti pada nomor 2, 3 , 7 terdapat poin penting yang harus kalian ketahui, yaituBilangan negatif pangkat genap= Hasilnya positifBilangan negatif pangkat ganjil= Hasilnya negatif2. Sifat Pembagian Bilangan BerpangkatPada operasi hitung pembagian bilangan berpangkat, maka akan berlaku sifat seperti di bawah iniam an = am-nUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini56 x 53 = 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 556 x 53 = 5 x 5 x 5 coret 5 x 5 x 5 x 5 x 5 x 556 x 53 = 53Sehingga, bisa kita simpulkan menjadi 56 x 53 = 56-3Contoh Soal Sifat Pembagian Bilangan Berpangkat dan PembahasannyaSederhanakan hasil pembagian dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!45 / 5334 / 23Jawab1. 45 / 53 = 45-3 = 42 = 162. 34 / 23, soal ini tidak bisa kita sederhakan kembali sebab bilangan pokonya berbeda 3 dan 2. Sehingga, kita hanya dapat menghitung nilainya saja, yaitu34 / 23 = 81/ 8 = 10,1253. Sifat Perpangkatan Bilangan BerpangkatPada operasi hitung perpangkatan bilangan berpangkat, maka akan berlaku sifat seperti berikut iniamn = amxnUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini532 =5 x 5 x 52532 = 5 × 5 × 5 × 5 × 5 × 5532 = 56Sehingga, bisa kita simpulkan menjadi 532 = 53×2Contoh Soal Sifat Perpangkatan Bilangan Berpangkat beserta PembahasannyaSederhanakan hasil perpangkatan dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!435[-24]2Jawab435 = 43×5 = 415 = = -24×2 = -28 = 2564. Sifat Perpangkatan Suatu Perkalian Dua BilanganPada operasi hitung perpangkatan pada sebuah perkalian dua bilangan, maka akan berlaku sifat seperti berikut inia x bm = am x bmUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini3 x 52 = 3 x 5 x 3 x 53 x 52 =3 x 3 x 5 x 53 x 52 = 32 x 52Sehingga, bisa kita simpulkan menjadi 3 x 52 = 32 x 52Contoh Soal Sifat Perpangkatan Suatu Perkalian 2 Bilangan dan PembahasannyaSederhanakan hasil perpangkatan dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!2 x 72[1/2 x 1/3]3Jawab2 x 72 = 22 x 72 = 4 x 49 = 196[1/2 x 1/3]3 = 1/23 x 1/33 = 1/8 x 1/27 = 1/2165. Sifat Perpangkatan Suatu Pembagian Dua BilanganDalam operasi hitung perpangkatan suatu pembagian dua bilangan, berlaku sifat sebagai berikuta bm = am bmUntuk lebih memahami cara mengenai rumus di atas, perhatikan uraian di bawah ini3/52 = 3/5 x 3/53/52 = 3 x 3/5 x 53/52 = 32/52Sehingga, bisa kita simpulkan menjadi 3/52 = 32/52Contoh Soal Sifat Perpangkatan Suatu Pembagian 2 Bilangan dan PembahasannyaSederhanakan hasil perpangkatan dari bilangan berpangkat di bawah ini, lalu tentukan nilainya!2/32[−3/2]3Jawab2/32 = 22/52 = 4/25[−3/2]3 = −33/23 = −27/86. Sifat Perpangkatan Bilangan nolApabila a merupakan bilangan real a ∈ R serta n merupakan bilangan bulat positif n ≥ 1, maka sifat-sifat perpangkatan bilangan 0 nol ialah sebagai berikutao = 10n = 00o = tak terdefinisiUntuk membuktikan sifat pangkat darir bilangan nol nomor 1, simak penjelasan di bawah ini24 24 = 24-4 = 20 sehingga,24 24 = 20, sebab 24 24 = 16/16 = 1, maka20 = 1Dengan pembuktian tersebut, maka dapat kita simpulkan jika seluruh bilangan real kecuali nol jika kita pangkatkan dengan 0 nol maka hasilnya akan sama dengan pembuktian sifat pangkat bilangan nol nomor 2, simak penjelasan di bawah ini01 = 0 × 0 = 002 = 0 × 0 × 0 = 003 = 0 × 0 × 0 × 0 = 0Dengan pembuktian di atas, maka bisa kita simpulkan jika bilangan nol apabila kita pangkatkan sebanyak apa pun hasilnya akan selalu pembuktian sifat pangkat bilangan nol nomor 3, simak penjelasan di bawah iniKita tahu jika nilai 0n = 0, sehingga,0n/0n = 0/0, nilai 0/0 = seluruh bilangan, karena seluruh bilangan dikalikan nol hasilnya yaitu dapat kita tuliskan bentuk persamaan lainnya, seperti0n/0n = 0n-n0n/0n = 00 karena 0n/0n = 0/0 = seluruh bilangan, maka00 = seluruh bilanganseluruh bilangan artinya dapat 1, 12, 123, 1234, 12345, 13456 dan seterusnya. Maka dari itu, definisinya tidak bisa kita simpulkan jika bilangan nol pangkat nol hasilnya tidak AkarBentuk akar merupakan akar dari suatu bilangan-bilangan yang hasilnya bukan termasuk ke dalam bilangan rasional bilangan yang meliputi bilangan cacah, bilangan prima, serta bilangan-bilangan lain yang terkait atau bilangan irasional yakni bilangan yang hasil baginya tidak pernah berhenti.Bentuk akar adalah bentuk lain untuk menyebutkan suatu bilangan yang berpangkat. Bentuk akar termasuk ke dalam bilangan irasional di mana bilangan irasional tidak bisa disebutkan dengan menggunakan bilangan pecahan a/b, a serta b bilangan bulat a dan b ≠ 0. Bilangan dari bentuk akar merupakan suatu bilangan yang ada di dalam tanda √ yang disebut sebagai tanda akar. Beberapa contoh bilangan irasional di dalam bentuk akar yakni √2, √6, √7, √11 dan lain sebagainya. Sementara untuk √25 bukanlah bentuk akar, sebab √25 = 5 5 merupakan bilangan rasional sama saja angka 25 bentuk akarnya yaitu √ akar “√” pertama kali diperkenalkan oleh seorang matematikawan asal Jerman yang bernama Christoff dalam bukunya dengan judul Die Coss. Simbol tersebut dipilih sebab mirip dengan huruf ” r ” yang mana diambil dari kata “radix”, yang merupakan bahasa latin bagi akar pangkat bilangan berpangkat yang mempunyai beberapa sifat-sifat, bentuk dari akar pun juga mempunyai beberapa sifat, diantaranya yakni√a2 = a√a x b = √a x √b ; a ≥ 0 dan b ≥ 0√a/b = √a/√b ; a ≥ 0 dan b ≥ 0Demikianlah ulasan singkat kali ini yang dapat kami sampaikan mengenai Bilangan Berpangkat – Eksponen. Semoga ulasan di atas mengenai Bilangan Berpangkat – Eksponen dapat kalian jadikan sebagai bahan belajar kalian.

Tulislahbilangan berikut dalam bentuk bilangan berpangkat! a. 81 b. -125 3. Tim peneliti dari Dinas Kesehatan suatu daerah di Indonesia Barat meneliti suatu Nyatakan hasil kali perpangkatan berikut dalam bentuk pangkat yang lebih sederhana. Bilangan 6 7 6 %7 6 setara dengan 2y untuk y suatu bilangan bulat positif. Tentukan nilai y. 99

Hai, Quipperian! Kamu telah berkenalan dengan bilangan berpangkat—lebih tepatnya lagi, bilangan berpangkat bulat positif, negatif, dan nol. Menurutmu, mudah atau sulitkah materi itu? Apakah kamu sudah mengingat betul sifat-sifat yang ada pada bilangan berpangkat? Percaya deh, mengenalinya tanpa mencoba mengerjakan latihan soalnya tidak akan menjadikan kamu berhasil menguasai materi tersebut. Pssst, meskipun kadang soal yang disajikan terlihat rumit, kamu dijamin akan bisa mengerjakan soal dengan menerapkan sifat-sifat bilangan berpangkat bulat positif yang bisa kamu temukan dalam postingan Quipper Blog juga. Nah, supaya kamu semakin mahir dalam melakukan operasi hitung pada bilangan berpangkat dan tidak salah dalam menerapkan sifat-sifatnya itu, Quipper Blog telah menyediakan latihan soal untuk kamu kerjakan, nih! Gimana, sudah siapkah kamu untuk mulai hitung-menghitung? Setelah menghitung dan mendapatkan jawabannya, cobalah samakan operasi hitung dan jawabanmu dengan pembahasan yang tersedia di bawah soal. Hmm, kira-kira, berapa soalkah yang akan kamu jawab dengan benar? Optimis benar semua enggak, nih? Jangan ditunda-tunda, deh! Yuk, segera dicoba! Contoh Soal Bilangan Berpangkat Bulat No. 1 Pembahasan Bilangan pokok pada soal ini ialah -6, sementara eksponennya ialah 3. Maka dari itu, yang perlu kamu lakukan ialah mengalikan -6 sebanyak 3 kali, sebagai berikut -63 = -6 x -6 × -6 =36 ×-6 =-216 Dengan demikian, pilihan jawaban yang tepat ialah pilihan pertama. Jawaban 1 Contoh Soal Bilangan Berpangkat Bulat No. 2 Pembahasan Dengan demikian, pilihan jawaban yang tepat ialah pilihan pertama. Jawaban 1 Contoh Soal Bilangan Berpangkat Bulat No. 3 Pembahasan Untuk mengerjakan soal satu ini, pertama-tama kamu harus menyelesaikan operasi perkalian yang ada di dalamnya, yaitu antara 4a524a2 dengan menggunakan salah satu sifat pada bilangan berpangkat bulat positif baru kemudian melakukan operasi penambahan, sebagai berikut 4a5 x 24 a2+ 6a7 = 4×24 a5 x a2 + 6a7 = 4×2×2×2×2×a5+2 + 6a7 = 64a7+6a7 = 70a7 Dengan demikian, pilihan jawaban yang tepat ialah pilihan keempat. Jawaban 4 Contoh Soal Bilangan Berpangkat Bulat No. 4 Pembahasan Persoalan satu ini menggabungkan operasi perkalian dengan pembagian. Karena semua bilangan pokok dalam soal adalah sama, kamu dapat langsung menerapkan sifat bilangan berpangkat bulat positif dalam soal perkalian pada pembilangnya dan juga pembagian pada soal secara utuhnya, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan ketiga. Jawaban 3 Contoh Soal Bilangan Berpangkat Bulat No. 5 Pembahasan Kelihatannya rumit, ya, Quipperian? Tapi, ternyata mengerjakan soal satu ini cukup mudah, lho, karena adanya kelompok bilangan yang sama, yakni b+c, yang dapat langsung kamu terapkan ke dalam salah satu sifat bilangan berpangkat bulat positif tanpa perlu repot-repot memecahkannya. Jangan lupa juga sifat bilangan berpangkat bulat negatif yang perlu kamu terapkan ke dalam penyebut pada pecahan ini, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan kedua. Jawaban 2 Contoh Soal Bilangan Berpangkat Bulat No. 6 Pembahasan Meskipun soal ini menyediakan bilangan berpangkat bulat negatif, jangan terkecoh dan menyulitkan dirimu sendiri dengan menjadikan seluruh pembilang dan penyebutnya ke dalam bentuk pecahan di dalam pecahan. Kamu bisa, lho, menerapkan salah satu sifat bilangan berpangkat bulat positif pada operasi perkalian yang ada di dalam soal ini. Pssst, jangan lupa untuk menjadikan semua bilangan bulat ke dalam bentuk pemangkatannya bila memungkinkan untuk semakin memudahkanmu menghitung, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan ketiga. Jawaban 4 Contoh Soal Bilangan Berpangkat Bulat No. 7 Pembahasan Nah, untuk soal satu ini, tentu saja pertama-tama kamu harus mengingat dahulu cara mencari luas permukaan serta volume kubus. Setelah kamu berhasil mendapatkannya, masukkan ke dalam perbandingan yang diminta, yakni luas permukaan dahulu, baru volume. Lalu, kamu tinggal menyederhanakan perbandingan yang kamu dapatkan, sebagai berikut Dengan demikian, pilihan jawaban yang tepat ialah pilihan keempat. Jawaban 4 Gimana, Quipperian? Berapa soalkah yang berhasil kamu jawab dengan benar? Selalu memberikan tantangan bagi dirimu sendiri untuk menjawab latihan soal pasti bisa menjadikanmu menguasai materi di dalam pelajaran Matematika, ya! Kalau kamu mau mengerjakan contoh soal lain seperti di atas, buruan gabung dengan Quipper Video! Sumber Anak Kelas 9, Yuk Pahami Materi Bilangan Berpangkat Bulat Positif, Negatif, dan Nol Ini! Penulis Evita

. 36 331 1 257 73 251 88 114

nyatakan bentuk berikut dalam bilangan berpangkat bulat positif