Bentuka cos x + b sin x bisa diubah menjadi. a cos x + b sin x = k cos (x – α) Nilai k dan α tidak ada di ruas kiri, sehingga bisa dicari dengan cara sebagai berikut. a cos x + b sin x = k cos (x – α) a cos x + b sin x = k [cos x cos α + sin x sin α]
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPenyelesaian dari persamaan akar3 sin2x + cos 2x = akar3 pada interval 0
6adalah KPK dari kedua angka ini karena 6 merupakan angka terkecil yang dapat dibagi habis oleh baik 3 maupun 2. Diketahui cos x sin x akar 2 cos x. Himpunan oenyelesaian dari persamaan akar 3 cos x - sin x
IIIndahpermata I30 November 2021 1135Pertanyaanhimpunan penyelesaian persamaan sin x -akar 3 cos x = akar 3, untuk 0derajat Diketahuipersamaan cos x = cos phi . Nilai x dalam interval – phi < x < phi yang memenuhi persamaan tersebut adalah . PEMBAHASAN. LATIHAN SOAL. Bagian 1: Untuk 0 < x < 720 o, tentukan himpunan penyelesaian dari persamaan-persamaan di bawah ini! cos 2x = 1; 2cos x = akar 3; 2 cos 2x – akar 3 = 0 ; Bagian 2: Bagian 3: Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriHimpunan penyelesaian persamaan sinx-akar3cosx=akar2, untuk interval 0
Salahsatu akar persamaan kuadrat x2 + (n + 1)x – 5n = 0 adalah 2, maka akar yang lainnya adalah (A) -5 (B) -4 (C) -3 (D) -2 (E) -1 2. Jika Jika sin θ dan cos θ adalah akar-akar persamaan kuadrat ax2 + bx + c = 0, maka hubungan yang benar dari hal di bawah ini adalah (A) a2 + 2ac = b2 (B) b2 + 2ac = a2
MatematikaTRIGONOMETRI Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih Sinus, Cosinus, TangentJika 2 cos x+2 akar3 sin x diubah ke dalam bentuk k cosx-q dengan k>0, maka akan diperoleh bentuk ...Rumus Jumlah dan Selisih Sinus, Cosinus, TangentPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0124Nilai tan 240 - tan 210 adalah . . . .0306Nilai sin 240+sin 225+cos 315 adalah .....0306Nilai tan 75 adalah ....0055Nilai dari sin 315 adalahTeks videojika kita menemui saat seperti ini maka pertama-tama kita harus tahu dari ketika kaki dibuka ada dijabarkan cos a cos X + B Sin X kita punya persamaan cos X + B Sin x = c a ca Maaf bisa dirubah menjadi bentuk k cos x-men dengan K adalah akar dari a kuadrat ditambah b kuadrat dan tangan di dapat dari a b c dan q = a b lihat isinya adalah cita-cita maka jadi jangan Ki bentuk umum penyelesaian X = tangen Alfa = Alfa + K dikali 190 derajat yang ada pencetnya sekarang kita kerjakan ya 2 cos X ditambah 2 akar 3 Sama ya Bentuknya sama ini. nanti juga bisa sekarang karena saya sama aja cari = akar dari 2 kuadrat ditambah 23 kuadrat maka 4 ditambah 2 kuadrat 4 dikali akar 3 kuadrat 3 = √ 16 atau hanya adalah 4 dan tangen b adalah B pangkat 3 per 2 jam tangan berapa yang hasilnya 3? tangan 60 derajat = derajat dikali 180 derajat ketika kanan 0 Makasih ya sama dengan 60 derajat jadi kakaknya 1 = derajat ambil yang mana kangen Tuh kan Sin per cos positif Begitu juga dengan kuadran 1 kuadran 1 sin cos tan semuanya posisi kita ambil sekarang bisa susun 4 cos x dikurangi 60 derajat ada disini mintanya dalam radian ya dalam 4 cos X minus 3 jawabannya adalah B sampai jumpa di video solusi berikutnya
Jadi akar dari x 2 + 2x − 3 = 0 ialah -3 atau 1. x 2 − 6x − 7 = 0. Dik : a = 1, b = -6, c = -7 Dengan rumus abc : ⇒ x 1,2 = Sama ibarat aturan sinus, aturan cosinus juga mampu digunakan untuk menentukan besar sudut dalam sebuah segitiga. Pada artikel sebelumnya te
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriNilai x yang memenuhi persamaan 2 akar3 cos^2 x-2sin x cos x-1-akar3=0, untuk 0<= x<=360 adalah ... a. {45,105,225,285} b. {45,135,225,315} c. {15,105,195,285} d. {15,135,195,315} d. {15,225,295,315}Persamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0904Sebuah talang air akan dibuat dari lembaran seng yang leb...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0653Himpunan semua bilangan real x pada selang [pi, 2 pi] y...Teks videokeren kali ini kita akan mencari nilai x yang memenuhi persamaan trigonometri di mana untuk interval x nya kurang dari atau = 360 derajat dan lebih dari atau sama dengan nol derajat nah disini kita perlu diingat rumus-rumus dari trigonometri Di mana Sin 2 Alfa itu = 2 Sin Alfa dikali cos Alfa kemudian Cos 2 Alfa = 2 cos kuadrat Alfa min 1 dan Sin Alfa Min beta itu = Sin Alfa dikali cos beta Min cos Alfa dikali Sin beta Nah di sini 2 akar 3 cos kuadrat X = min √ 3 kita jadikan satu tinggal di sini 2 akar 3 cos kuadrat X kemudian dikurangi dengan √ 3 kemudian min 2 Sin x cos X maka menjadi Sin 2 X dikurang 1 sama dengan nol kemudian akar 3 kita keluarkan kalau akar 3 kita kelasnya menjadi 2 cosKuadrat x min 1 dikurang sin 2x dikurang 1 sama dengan nol. Nah √ 3 itu kan = 60 derajat ya jadi Tan 60 derajat Itu sama dengan akar 3 di mana kita tahu Tan itu Sin per cos maka dapat kita tulis Sin 60 derajat dibagi dengan cos 60 derajat 3 akar 3 ini dapat kita tulis Sin 60 derajat dibagi dengan cos 60 derajat kemudian 2 cos kuadrat x min 1 menjadi cos 2x cos 2x dikurang sin 2x kemudian min 1 Kita pindah Ros makan sama dengan 1 lalu di sini kita samakan penyebutnya a maka Sin 60 derajat dikali dengan cos 2x kemudian dikurangi dengan cos 60 derajat dikali dengan sin 2x kemudian dibagi dengan cos 60 derajat = 1. Nah ini kita kali silang lalu sin cos cos Itu kan = Sin Alfa Min beta Blade ini Alfa ini ditanya berarti Sin 60 derajat dikurang dengan 2 x maka = cos 60 derajat dikali 1 cos 60 itu adalah setengah nama kan disini kita dapat Sin 60 derajat min 2 x = setengah Kemudian untuk mencari nilai x kita gunakan rumus dari persamaan trigonometri untuk rumus persamaan trigonometri yaitu teen X = Sin Alfa maka dapat kita cari nilai x nya yaitu = Alfa + K dikali 360 derajat atau X = 180° Sin Alfa ditambah k dikali 360 derajat. Di manakah ini merupakan elemen bilangan bulat Nah kita jadikan Sin di mana kita tahu Sin 30° itu adalah setengah maka dapat kita Tuliskan Sin 60 derajat min 2 x ini = Sin 30 derajat sehingga dapat kita Tuliskan untuk yang pertama 60 derajat Min 2x ini = 30 derajat ditambah k dikali 360 derajat kemudian di sini min 2 x = 6 derajat kita pindah ruas berarti 30 derajat dikurang dengan 60 derajat 30 derajat + k dikali 360 derajat kemudian ke 200 kita bagi dengan negatif 2 sehingga x = 15 derajat kemudian ditambah dikurangi akar 6 minus dikurang k dikali dengan 180° Nah di sini karena Kak merupakan elemen bilangan bulat kita coba nilai kakaknya itu = negatif 2 Naji kakaknya negatif 2 maka nilai x nya sama dengan 160 derajat ditambah 15 375 derajat nah ini tidak memenuhi karena 0-360 derajat kemudian kita coba kakaknya = negatif 1 maka untuk nilai x nya ini = 108 derajat ditambah 15 195° ini memenuhi kemudian kita coba tanya sama dengan nol maka untuk nilai x nya = 15 derajat di sini kita cukupkan sampai dengan K = 0 kalau k = 1 nanti negatif 3 x = 195 derajat dan x = 15 derajat untuk yang kedua X = 108 derajat Min Alfa + K dikali 360 derajat tinggi yang kedua ini kita gunakan X = berarti 60° ya 60 derajat min 2 x = 108 derajat Min Berarti 140 kurang 30 adalah 150 derajat. Kemudian ditambahkan dikali 360 derajat 60 Kita pindah ruas maka min 2 x = 90 derajat ditambah k dikali 360 derajat kemudian ke 200 kita berbagi dengan min 2 agar kita dapat nilai x-nya x-nya = 45 derajat Min 45 derajat Min 45 derajat kemudian ditambah dengan dikurang karena negatif Min k dikali 180 derajat. Nah, kemudian kita cari nilainya kita coba kayaknya kita mulai dari negatif dua ya negatif 2 maka untuk nilai x nya = 360 derajat dikurang 45 315 derajat kemudian ketika kakaknya = negatif 1 dari nilai x nya = 135 derajat kemudian ketika kan yang sama dengan nol nilai x nya = Min 45 derajat nya tidak memenuhi 3y yang memenuhi hanya 315 dan 135 Nah tadi kita sudah dapat 195 dan 15 kita bahkan untuk yang kedua ini kita dapat 315 derajat dan 135 derajat sehingga untuk himpunan penyelesaian nya yaitu 15 derajat 135 derajat 195 derajat dan yang terakhir 315 derajat maka jawabannya adalah yang di Oke sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Akarmerupakan bentuk lain untuk menyatakan bilangan berpangkat.Akar dari sebuah bilangan adalah basis yang memenuhi bilangan tersebut berkenaan dengan pangkat akarnya. Berdasarkan konsep pemangkatan, diketahui bahwa jika bilangan-bilangan yang sama (misalnya x) dikalikan sejumlah tertentu sebanyak (katakanlah) a kali, maka dapat ditulis menjadi x a ,

Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0904Sebuah talang air akan dibuat dari lembaran seng yang leb...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0653Himpunan semua bilangan real x pada selang [pi, 2 pi] y...Teks videoHalo presiden untuk kerjakan soal seperti ini pertama-tama kita lihat soalnya terlebih dahulu jadi di sini ada akar 3 cos X min Sin x = akar 2 lalu kita diminta untuk mencari himpunan penyelesaian Nya maka kita menggunakan rumus yang di bawah ini yaitu P cos x ditambah Q Sin x = cos X min Alfa maka untuk mendapatkan r-nya = akar dari X kuadrat ditambah dengan Q kuadrat apanya didapatkan dari Q per P lalu berikutnya di sini kita lihat pada soalnya akar 3 cos X berarti kita mengetahui bahwa p nya adalah koefisien dari cos yang nilainya adalah untuk soal ini. Apa arti nggak sedangkan Q nya adalah koefisien dari sin X untuk X nilai F min 1 lalu berikutnya kita akan mencari nilai dari R nya terlebih dahulu posisi R = akar dari P kuadrat / akar 3 kuadrat ditambah dengan min 1 kuadratdengan √ 4 √ 4 jika kita Sederhanakan maka kita dapatkan hasilnya itu lalu sekarang kita akan cari untuk alfanya Bakti Tan Alfa = Q per p q nya min 1 banyak akar 3 maka kita dapatkan Tan Alfa nya sama dengan kita kan rasionalkan ini min 1 per 3 dikalikan dengan √ 3 sekarang kita dapatkan Tan Alfa dengan nilainya Sekarang kita akan mencari ikan dengan sudut berapa yang hasilnya adalah min 1 per 3 akar 3 mengetahui bahwa Tan 30 derajat hasilnya adalah 1 per 3 akar tinggal di sini kita akan cari yang negatif maka kita akan gunakan yang ada di kuadran ke-4 di mana hanya positif pada kos seperti di sini jawabannya adalah Tan Min 30 derajat hasilnya adalah min 1 per 3 akar 3maka kita mengetahui bahwa di sini nilai apanya = Min 30 derajat sekarang kita mendapatkan dan Apanya yang kita masukkan Bakti r-nya 2 dikalikan dengan cos X min Alfa Min Sin 30° = kita lihat di soalnya nilainya adalah √ 3 cos X min Sin x = akar 2 = akar 2 cos x + 30° = 1 per 2 akar 2 Sekarang kita akan mencari kos dengan sudut berapa yang hasilnya 1 per 2 akar 2 adalah cos 45 derajat maka di sini kita lihat rumusnya yaitu cos x = cos Alfa jadi x y = 4 + k * 360 derajat atau X = min Alfa* 360 derajat tadi tadi kita Tuliskan ulangan batik cos x + 30° = cos 45 derajat kita masukkan batik x + 30 derajat = 45 derajat ditambah dengan K * 360 derajat jadi kita akan gunakan pertama yang pertama x = 15 derajat ditambah dengan x 360 derajat hadits ini adalah perputaran yang nilainya adalah bilangan bulat maka kita kan Misalkan bawakan Yang awak tanya sama dengan nol jadi x-nya = 15 derajat kita segitu sisanya dengan nol jadi tambah dengan 0 * 306 derajat dapatkan hasil yaitu 15 derajat X jika x = 1 kita dapatkan x-nya = 15 derajat ditambah dengan* 360 derajat + sin 375 derajat kita dapat melihat bahwa tinggal 75° sudah melebihi interval yang diketahui di soal yaitu intervalnya adalah x lebih besar dari 0 dan x kurang dari 360 derajat X sudah melebihi maka kita tidak perlu lagi cek untuk yang nilainya lebih besar dari 1 karena pasti sudah melebihi Sekarang kita akan cari menggunakan persamaan yang kedua yaitu x + 30 derajat = kita akan digunakan negatif 45 derajat ditambah dengan Kak Ali 360° paket dapatkan hasilnya itu X = min 75 derajat ditambah dengan x 360 derajat = 0 maka X = min 75 derajat kanan di sini esnya sudah kurang dari intervalnya maka kita tidak maka kita tidak perlucek untuk yang nilainya kurang dari nol sekarang kita lihat di kakaknya = 14 x nya = Min 75 derajat ditambah dengan 360° hasilnya adalah 285 derajat = 2 maka x nya = 645 derajat panas ini sudah melebihi maka tidak perlu lagi cek untuk menyanyikannya lebih besar dari 2 dapat dilihat bahwa yang memenuhi adalah yang 15 derajat dan 285 derajat jadi himpunan penyelesaiannya = 15 derajat dan 285 derajat Jadi jika kita pada pilihan gandanya jawabannya sesuai adalah jawaban yang B sampai jumpa pada soal berikut nyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

. 114 251 41 15 39 159 249 220

akar 3 cos x sin x akar 2